peleffy.topology.ZMatrix

class peleffy.topology.ZMatrix(topology)[source]

It generates the zmatrix of a molecule as a numpy.array.

Inspired by the PlopRotTemp algorithm.

__init__(topology)[source]

It initializes a ZMatrix object.

Parameters

topology (a peleffy.topology.Topology) – The molecular topology representation to generate the zmatrix with

Examples

Given a molecular topology, build its Z-matrix

>>> from peleffy.topology import Molecule
>>> molecule = Molecule(smiles='Cc1ccccc1')
>>> from peleffy.forcefield import OpenForceField
>>> openff = OpenForceField('openff_unconstrained-1.2.1.offxml')
>>> parameters = openff.parameterize(molecule)
>>> from peleffy.topology import Topology
>>> topology = Topology(molecule, parameters)
>>> from peleffy.topology import ZMatrix
>>> zmatrix = ZMatrix(topology)
all(axis=None, out=None, keepdims=False, *, where=True)

Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

numpy.all()

equivalent function

any(axis=None, out=None, keepdims=False, *, where=True)

Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

numpy.any()

equivalent function

argmax(axis=None, out=None)

Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

numpy.argmax()

equivalent function

argmin(axis=None, out=None)

Return indices of the minimum values along the given axis.

Refer to numpy.argmin for detailed documentation.

See also

numpy.argmin()

equivalent function

argpartition(kth, axis=- 1, kind='introselect', order=None)

Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

numpy.argpartition()

equivalent function

argsort(axis=- 1, kind=None, order=None)

Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

numpy.argsort()

equivalent function

astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.

Parameters
  • dtype (str or dtype) – Typecode or data-type to which the array is cast.

  • order ({‘C’, ‘F’, ‘A’, ‘K’}, optional) – Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible. Default is ‘K’.

  • casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) – Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

    • ‘no’ means the data types should not be cast at all.

    • ‘equiv’ means only byte-order changes are allowed.

    • ‘safe’ means only casts which can preserve values are allowed.

    • ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

    • ‘unsafe’ means any data conversions may be done.

  • subok (bool, optional) – If True, then sub-classes will be passed-through (default), otherwise the returned array will be forced to be a base-class array.

  • copy (bool, optional) – By default, astype always returns a newly allocated array. If this is set to false, and the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

Returns

arr_t – Unless copy is False and the other conditions for returning the input array are satisfied (see description for copy input parameter), arr_t is a new array of the same shape as the input array, with dtype, order given by dtype, order.

Return type

ndarray

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for “unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string dtype length is long enough to store the max integer/float value converted.

Raises

ComplexWarning – When casting from complex to float or int. To avoid this, one should use a.real.astype(t).

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. ,  2. ,  2.5])
>>> x.astype(int)
array([1, 2, 2])
byteswap(inplace=False)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number are swapped individually.

Parameters

inplace (bool, optional) – If True, swap bytes in-place, default is False.

Returns

out – The byteswapped array. If inplace is True, this is a view to self.

Return type

ndarray

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([  256,     1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')
A.newbyteorder().byteswap() produces an array with the same values

but different representation in memory

>>> A = np.array([1, 2, 3])
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
       0, 0], dtype=uint8)
>>> A.newbyteorder().byteswap(inplace=True)
array([1, 2, 3])
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
       0, 3], dtype=uint8)
choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

numpy.choose()

equivalent function

clip(min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also

numpy.clip()

equivalent function

compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

numpy.compress()

equivalent function

conj()

Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

numpy.conjugate()

equivalent function

conjugate()

Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

numpy.conjugate()

equivalent function

copy(order='C')

Return a copy of the array.

Parameters

order ({‘C’, ‘F’, ‘A’, ‘K’}, optional) – Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible. (Note that this function and numpy.copy() are very similar but have different default values for their order= arguments, and this function always passes sub-classes through.)

See also

numpy.copy()

Similar function with different default behavior

numpy.copyto()

Notes

This function is the preferred method for creating an array copy. The function numpy.copy() is similar, but it defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')
>>> y = x.copy()
>>> x.fill(0)
>>> x
array([[0, 0, 0],
       [0, 0, 0]])
>>> y
array([[1, 2, 3],
       [4, 5, 6]])
>>> y.flags['C_CONTIGUOUS']
True
cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

numpy.cumprod()

equivalent function

cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

numpy.cumsum()

equivalent function

diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See also

numpy.diagonal()

equivalent function

dot(b, out=None)

Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

numpy.dot()

equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2.,  2.],
       [2.,  2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8.,  8.],
       [8.,  8.]])
dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file (str or Path) – A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

dumps()

Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters

None

fill(value)

Fill the array with a scalar value.

Parameters

value (scalar) – All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1.,  1.])
flatten(order='C')

Return a copy of the array collapsed into one dimension.

Parameters

order ({‘C’, ‘F’, ‘A’, ‘K’}, optional) – ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns

y – A copy of the input array, flattened to one dimension.

Return type

ndarray

See also

ravel()

Return a flattened array.

flat()

A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
getfield(dtype, offset=0)

Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
  • dtype (str or dtype) – The data type of the view. The dtype size of the view can not be larger than that of the array itself.

  • offset (int) – Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j,  0.+0.j],
       [0.+0.j,  2.+4.j]])
>>> x.getfield(np.float64)
array([[1.,  0.],
       [0.,  2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1.,  0.],
       [0.,  4.]])
item(*args)

Copy an element of an array to a standard Python scalar and return it.

Parameters

*args (Arguments (variable number and type)) –

  • none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned.

  • int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return.

  • tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array.

Returns

z – A copy of the specified element of the array as a suitable Python scalar

Return type

Standard Python scalar object

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python’s optimized math.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],
       [1, 3, 6],
       [1, 0, 1]])
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
itemset(*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is equivalent to but faster than a[args] = item. The item should be a scalar value and args must select a single item in the array a.

Parameters

*args (Arguments) – If one argument: a scalar, only used in case a is of size 1. If two arguments: the last argument is the value to be set and must be a scalar, the first argument specifies a single array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular location in an ndarray, if you must do this. However, generally this is discouraged: among other problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],
       [1, 3, 6],
       [1, 0, 1]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[2, 2, 6],
       [1, 0, 6],
       [1, 0, 9]])
max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

numpy.amax()

equivalent function

mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)

Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

numpy.mean()

equivalent function

min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

numpy.amin()

equivalent function

newbyteorder(new_order='S', /)

Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order (string, optional) – Byte order to force; a value from the byte order specifications below. new_order codes can be any of:

  • ‘S’ - swap dtype from current to opposite endian

  • {‘<’, ‘little’} - little endian

  • {‘>’, ‘big’} - big endian

  • ‘=’ - native order, equivalent to sys.byteorder

  • {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order.

Returns

new_arr – New array object with the dtype reflecting given change to the byte order.

Return type

array

nonzero()

Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

numpy.nonzero()

equivalent function

partition(kth, axis=- 1, kind='introselect', order=None)

Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.

New in version 1.8.0.

Parameters
  • kth (int or sequence of ints) – Element index to partition by. The kth element value will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order of all elements in the partitions is undefined. If provided with a sequence of kth it will partition all elements indexed by kth of them into their sorted position at once.

  • axis (int, optional) – Axis along which to sort. Default is -1, which means sort along the last axis.

  • kind ({‘introselect’}, optional) – Selection algorithm. Default is ‘introselect’.

  • order (str or list of str, optional) – When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need to be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

See also

numpy.partition()

Return a parititioned copy of an array.

argpartition()

Indirect partition.

sort()

Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])
>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])
prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)

Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

numpy.prod()

equivalent function

ptp(axis=None, out=None, keepdims=False)

Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

numpy.ptp()

equivalent function

put(indices, values, mode='raise')

Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

numpy.put()

equivalent function

ravel([order])

Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

numpy.ravel()

equivalent function

ndarray.flat()

a flat iterator on the array.

repeat(repeats, axis=None)

Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

numpy.repeat()

equivalent function

reshape(shape, order='C')

Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

numpy.reshape()

equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to a.reshape((10, 11)).

resize(new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters
  • new_shape (tuple of ints, or n ints) – Shape of resized array.

  • refcheck (bool, optional) – If False, reference count will not be checked. Default is True.

Returns

Return type

None

Raises
  • ValueError – If a does not own its own data or references or views to it exist, and the data memory must be changed. PyPy only: will always raise if the data memory must be changed, since there is no reliable way to determine if references or views to it exist.

  • SystemError – If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also

resize()

Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure that you have not shared the memory for this array with another Python object, then you may safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
       [1]])
>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
       [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
       [3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])
round(decimals=0, out=None)

Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

numpy.around()

equivalent function

searchsorted(v, side='left', sorter=None)

Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

numpy.searchsorted()

equivalent function

setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters
  • val (object) – Value to be placed in field.

  • dtype (dtype object) – Data-type of the field in which to place val.

  • offset (int, optional) – The number of bytes into the field at which to place val.

Returns

Return type

None

See also

getfield()

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1.,  0.,  0.],
       [0.,  1.,  0.],
       [0.,  0.,  1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
       [3, 3, 3],
       [3, 3, 3]], dtype=int32)
>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],
       [1.5e-323, 1.0e+000, 1.5e-323],
       [1.5e-323, 1.5e-323, 1.0e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1.,  0.,  0.],
       [0.,  1.,  0.],
       [0.,  0.,  1.]])
setflags(write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
  • write (bool, optional) – Describes whether or not a can be written to.

  • align (bool, optional) – Describes whether or not a is aligned properly for its type.

  • uic (bool, optional) – Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y = np.array([[3, 1, 7],
...               [2, 0, 0],
...               [8, 5, 9]])
>>> y
array([[3, 1, 7],
       [2, 0, 0],
       [8, 5, 9]])
>>> y.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : False
  ALIGNED : False
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True
sort(axis=- 1, kind=None, order=None)

Sort an array in-place. Refer to numpy.sort for full documentation.

Parameters
  • axis (int, optional) – Axis along which to sort. Default is -1, which means sort along the last axis.

  • kind ({‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional) – Sorting algorithm. The default is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option is retained for backwards compatibility.

    Changed in version 1.15.0: The ‘stable’ option was added.

  • order (str or list of str, optional) – When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

See also

numpy.sort()

Return a sorted copy of an array.

numpy.argsort()

Indirect sort.

numpy.lexsort()

Indirect stable sort on multiple keys.

numpy.searchsorted()

Find elements in sorted array.

numpy.partition()

Partial sort.

Notes

See numpy.sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
       [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
       [1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],
      dtype=[('x', 'S1'), ('y', '<i8')])
squeeze(axis=None)

Remove axes of length one from a.

Refer to numpy.squeeze for full documentation.

See also

numpy.squeeze()

equivalent function

std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

numpy.std()

equivalent function

sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)

Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

numpy.sum()

equivalent function

swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

numpy.swapaxes()

equivalent function

take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

numpy.take()

equivalent function

tobytes(order='C')

Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced in C-order by default. This behavior is controlled by the order parameter.

New in version 1.9.0.

Parameters

order ({‘C’, ‘F’, ‘A’}, optional) – Controls the memory layout of the bytes object. ‘C’ means C-order, ‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. Default is ‘C’.

Returns

s – Python bytes exhibiting a copy of a’s raw data.

Return type

bytes

Examples

>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'
tofile(fid, sep='', format='%s')

Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be recovered using the function fromfile().

Parameters
  • fid (file or str or Path) – An open file object, or a string containing a filename.

    Changed in version 1.17.0: pathlib.Path objects are now accepted.

  • sep (str) – Separator between array items for text output. If “” (empty), a binary file is written, equivalent to file.write(a.tobytes()).

  • format (str) – Format string for text file output. Each entry in the array is formatted to text by first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-like objects that do not support fileno() (e.g., BytesIO).

tolist()

Return the array as an a.ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible builtin Python type, via the ~numpy.ndarray.item function.

If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python scalar.

Parameters

none

Returns

y – The possibly nested list of array elements.

Return type

object, or list of object, or list of list of object, or ..

Notes

The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose precision.

Examples

For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[1, 2]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
  ...
TypeError: iteration over a 0-d array
>>> a.tolist()
1
tostring(order='C')

A compatibility alias for tobytes, with exactly the same behavior.

Despite its name, it returns bytes not strs.

Deprecated since version 1.19.0.

trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

numpy.trace()

equivalent function

transpose(*axes)

Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does a[:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

Parameters

axes (None, tuple of ints, or n ints) –

  • None or no argument: reverses the order of the axes.

  • tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

  • n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alternative to the tuple form)

Returns

out – View of a, with axes suitably permuted.

Return type

ndarray

See also

transpose()

Equivalent function

ndarray.T()

Array property returning the array transposed.

ndarray.reshape()

Give a new shape to an array without changing its data.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
       [3, 4]])
>>> a.transpose()
array([[1, 3],
       [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
       [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
       [2, 4]])
var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

numpy.var()

equivalent function

view([dtype][, type])

New view of array with the same data.

Note

Passing None for dtype is different from omitting the parameter, since the former invokes dtype(None) which is an alias for dtype('float_').

Parameters
  • dtype (data-type or ndarray sub-class, optional) – Data-type descriptor of the returned view, e.g., float32 or int16. Omitting it results in the view having the same data-type as a. This argument can also be specified as an ndarray sub-class, which then specifies the type of the returned object (this is equivalent to setting the type parameter).

  • type (Python type, optional) – Type of the returned view, e.g., ndarray or matrix. Again, omission of the parameter results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
       [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2.,  3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3,  4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
       [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
    ...
ValueError: To change to a dtype of a different size, the array must be C-contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
       [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

Attributes

T

The transposed array.

base

Base object if memory is from some other object.

ctypes

An object to simplify the interaction of the array with the ctypes module.

data

Python buffer object pointing to the start of the array’s data.

dtype

Data-type of the array’s elements.

flags

Information about the memory layout of the array.

flat

A 1-D iterator over the array.

imag

The imaginary part of the array.

itemsize

Length of one array element in bytes.

nbytes

Total bytes consumed by the elements of the array.

ndim

Number of array dimensions.

real

The real part of the array.

shape

Tuple of array dimensions.

size

Number of elements in the array.

strides

Tuple of bytes to step in each dimension when traversing an array.